Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 559
1.
PLoS One ; 19(5): e0292978, 2024.
Article En | MEDLINE | ID: mdl-38728307

Endosalpingiosis (ES) and endometriosis (EM) refer to the growth of tubal and endometrial epithelium respectively, outside of their site of origin. We hypothesize that uterine secretome factors drive ectopic growth. To test this, we developed a mouse model of ES and EM using tdTomato (tdT) transgenic fluorescent mice as donors. To block implantation factors, progesterone knockout (PKO) tdT mice were created. Fluorescent lesions were present after oviduct implantation with and without WT endometrium. Implantation was increased (p<0.05) when tdt oviductal tissue was implanted with endometrium compared to oviductal tissue alone. Implantation was reduced (p<0.0005) in animals implanted with minced tdT oviductal tissue with PKO tdT endometrium compared to WT endometrium. Finally, oviductal tissues was incubated with and without a known implantation factor, leukemia inhibitory factor (LIF) prior to and during implantation. LIF promoted lesion implantation. In conclusion, endometrial derived implantation factors, such as LIF, are necessary to initiate ectopic tissue growth. We have developed an animal model of ectopic growth of gynecologic tissues in a WT mouse which will potentially allow for development of new prevention and treatment modalities.


Endometriosis , Endometrium , Uterus , Animals , Female , Mice , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Uterus/metabolism , Endometrium/metabolism , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Secretome/metabolism , Mice, Transgenic , Disease Models, Animal , Fallopian Tubes/metabolism , Progesterone/metabolism , Mice, Knockout , Embryo Implantation/physiology
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731966

Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.


Cell Proliferation , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , K562 Cells , Apoptosis , Secretome/metabolism , Middle Aged , Female , Male , Bone Marrow Cells/metabolism , Cell Lineage/genetics , Cell Survival , Adult
3.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735979

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Adipose Tissue , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Secretome/metabolism , Animals , Stem Cell Transplantation/methods
4.
Sci Rep ; 14(1): 10243, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702388

The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.


Freeze Drying , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Secretome/metabolism , Trehalose/metabolism , Trehalose/pharmacology , Cytokines/metabolism , Cells, Cultured , Culture Media, Conditioned/chemistry , Cryopreservation/methods , Temperature
5.
Stem Cell Res Ther ; 15(1): 121, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664697

BACKGROUND: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a possible innovative alternative. METHODS: In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells (CM-hUCESC) in TNBC. RESULTS: The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed in a mouse tumor xenograft model showing that the combination of both products has a significant effect in reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC and soluble factors, such as TIMP-1 and - 2. CONCLUSIONS: In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may decrease chemotherapy-related toxicity.


Cell Proliferation , Mesenchymal Stem Cells , Paclitaxel , Secretome , Triple Negative Breast Neoplasms , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Female , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Secretome/metabolism , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Cervix Uteri/metabolism , Cervix Uteri/pathology , Cervix Uteri/drug effects
6.
Front Immunol ; 15: 1232070, 2024.
Article En | MEDLINE | ID: mdl-38638443

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Kupffer Cells , Non-alcoholic Fatty Liver Disease , Humans , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-13/metabolism , Secretome , Macrophages , Liver Cirrhosis , Killer Cells, Natural/metabolism
7.
Stem Cell Res Ther ; 15(1): 119, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659070

BACKGROUND: Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. METHODS: We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. RESULTS: Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. CONCLUSIONS: Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.


Acute Kidney Injury , Inflammation , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Rats , Humans , Inflammation/pathology , Inflammation/metabolism , Male , Secretome/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Rats, Sprague-Dawley , Injections, Subcutaneous , Kidney/metabolism , Kidney/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Stromal Cells/metabolism
8.
Mol Biol Rep ; 51(1): 570, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658405

INTRODUCTION: Spinal cord injury (SCI) leads to significant destruction of nerve tissue, causing the degeneration of axons and the formation of cystic cavities. This study aimed to examine the characteristics of human umbilical cord-derived mesenchymal stem cells (HUCMSCs) cultured in a serum-free conditioned medium (CM) and assess their effectiveness in a well-established hemitransection SCI model. MATERIALS AND METHODS: In this study, HUCMSCs cultured medium was collected and characterized by measuring IL-10 and identifying proteomics using mass spectroscopy. This collected serum-free CM was further used in the experiments to culture and characterize the HUMSCs. Later, neuronal cells derived from CM-enriched HUCMSC were tested sequentially using an injectable caffeic acid-bioconjugated gelatin (CBG), which was further transplanted in a hemitransection SCI model. In vitro, characterization of CM-enriched HUCMSCs and differentiated neuronal cells was performed using flow cytometry, immunofluorescence, electron microscopy, and post-transplant analysis using immunohistology analysis, qPCR, in vivo bioluminescence imaging, and behavioral analysis using an infrared actimeter. RESULTS: The cells that were cultured in the conditioned media produced a pro-inflammatory cytokine called IL-10. Upon examining the secretome of the conditioned media, the Kruppel-like family of KRAB and zinc-finger proteins (C2H2 and C4) were found to be activated. Transcriptome analysis also revealed an increased expression of ELK-1, HOXD8, OTX2, YY1, STAT1, ETV7, and PATZ1 in the conditioned media. Furthermore, the expression of Human Stem-101 confirmed proliferation during the first 3 weeks after transplantation, along with the migration of CBG-UCNSC cells within the transplanted area. The gene analysis showed increased expression of Nestin, NeuN, Calb-2, Msi1, and Msi2. The group that received CBG-UCNSC therapy showed a smooth recovery by the end of week 2, with most rats regaining their walking abilities similar to those before the spinal cord injury by week 5. CONCLUSIONS: In conclusion, the CBG-UCNSC method effectively preserved the integrity of the transplanted neuronal-like cells and improved locomotor function. Thus, CM-enriched cells can potentially reduce biosafety risks associated with animal content, making them a promising option for clinical applications in treating spinal cord injuries.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Transcriptome , Umbilical Cord , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Mesenchymal Stem Cells/metabolism , Culture Media, Conditioned/pharmacology , Umbilical Cord/cytology , Umbilical Cord/metabolism , Humans , Animals , Mesenchymal Stem Cell Transplantation/methods , Transcriptome/genetics , Rats , Secretome/metabolism , Cell Differentiation , Neurons/metabolism , Disease Models, Animal , Interleukin-10/genetics , Interleukin-10/metabolism , Cells, Cultured , Proteomics/methods
9.
Sci Rep ; 14(1): 8379, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600116

Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.


Lacticaseibacillus rhamnosus , Monocytes , Humans , Monocytes/metabolism , Secretome , Lipopolysaccharides , Cytokines/metabolism , Chemokines/metabolism , Immunity
10.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38673927

Domestic cat blastocysts cultured without the zona pellucida exhibit reduced implantation capacity. However, the protein expression profile has not been evaluated in these embryos. The objective of this study was to evaluate the protein expression profile of domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were generated: (1) domestic cat embryos generated by IVF and cultured in vitro (zona intact, (ZI)) and (2) domestic cat embryos cultured in vitro without the zona pellucida (zona-free (ZF group)). The cleavage, morula, and blastocyst rates were estimated at days 2, 5 and 7, respectively. Day 7 blastocysts and their culture media were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The UniProt Felis catus database was used to identify the standard proteome. No significant differences were found in the cleavage, morula, or blastocyst rates between the ZI and ZF groups (p > 0.05). Proteomic analysis revealed 22 upregulated and 20 downregulated proteins in the ZF blastocysts. Furthermore, 14 proteins involved in embryo development and implantation were present exclusively in the culture medium of the ZI blastocysts. In conclusion, embryo culture without the zona pellucida did not affect in vitro development, but altered the protein expression profile and release of domestic cat blastocysts.


Blastocyst , Proteomics , Zona Pellucida , Animals , Blastocyst/metabolism , Zona Pellucida/metabolism , Cats , Proteomics/methods , Embryo Culture Techniques , Secretome/metabolism , Female , Fertilization in Vitro , Proteome/metabolism , Embryonic Development , Tandem Mass Spectrometry , Chromatography, Liquid
11.
Cells ; 13(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38607010

Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.


Extracellular Vesicles , Glioblastoma , Receptors, Purinergic P2X7 , Secretome , Humans , Cell Line, Tumor , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/pathology , Proteome/metabolism , Proteomics , Receptors, Purinergic P2X7/metabolism
12.
BMC Plant Biol ; 24(1): 251, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582844

BACKGROUND: Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS: We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS: Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.


Cuscuta , Parasites , Striga , Animals , Striga/genetics , Cuscuta/genetics , Secretome , Virulence Factors/genetics , Plant Weeds
13.
Biomed Pharmacother ; 174: 116536, 2024 May.
Article En | MEDLINE | ID: mdl-38569274

Diabetic kidney disease (DKD) is a leading cause of kidney failure. However, the involvement of renal fibroblasts and their communications with renal epithelial cells during DKD remain poorly understood. We investigated the potential role of renal proximal tubular epithelial cells (PTECs) in renal fibroblast activation that might lead to DKD. Additionally, the protective effects of curcumin, a known antioxidant, against renal fibroblast activation induced by high glucose-treated PTECs were investigated. Secretome was collected from HK-2 PTECs under normal glucose, high glucose, high glucose pretreated/cotreated with curcumin, or osmotic control condition for 24 h. Such secretome was then used to treat BHK-21 renal fibroblasts for 24 h. BHK-21 cells treated with high glucose-induced secretome had increased levels of fibroblast activation markers, including spindle index, F-actin, α-smooth muscle actin (α-SMA), fibronectin, collagen I, matrix metalloproteinase-2 (MMP-2) and MMP-9, as compared with normal glucose and osmotic control conditions. However, all these increases were successfully mitigated by curcumin. In addition, high glucose markedly increased intracellular reactive oxygen species (ROS) and transforming growth factor-ß (TGF-ß) secretion, but did not affect the secretion of platelet-derived growth factor A (PDGFA) and interleukin-1ß (IL-1ß), in HK-2 renal cells as compared with normal glucose and osmotic control conditions. Both intracellular ROS and secreted TGF-ß levels were successfully mitigated by curcumin. Therefore, curcumin prevents the high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation, at least in part, via mitigating intracellular ROS and TGF-ß secretion.


Curcumin , Fibroblasts , Glucose , Reactive Oxygen Species , Transforming Growth Factor beta , Curcumin/pharmacology , Glucose/toxicity , Fibroblasts/drug effects , Fibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Humans , Reactive Oxygen Species/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Animals , Secretome/drug effects , Secretome/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Antioxidants/pharmacology
14.
Cell Transplant ; 33: 9636897241236584, 2024.
Article En | MEDLINE | ID: mdl-38501500

Aging, space flight, and prolonged bed rest have all been linked to bone loss, and no effective treatments are clinically available at present. Here, with the rodent hindlimb unloading (HU) model, we report that the bone marrow (BM) microenvironment was significantly altered, with an increased number of myeloid cells and elevated inflammatory cytokines. In such inflammatory BM, the osteoclast-mediated bone resorption was greatly enhanced, leading to a shifted bone remodeling balance that ultimately ends up with disuse-induced osteoporosis. Using Piezo1 conditional knockout (KO) mice (Piezo1fl/fl;LepRCre), we proved that lack of mechanical stimuli on LepR+ mesenchymal stem cells (MSCs) is the main reason for the pathological BM inflammation. Mechanically, the secretome of MSCs was regulated by mechanical stimuli. Inadequate mechanical load leads to increased production of inflammatory cytokines, such as interleukin (IL)-1α, IL-6, macrophage colony-stimulating factor 1 (M-CSF-1), and so on, which promotes monocyte proliferation and osteoclastic differentiation. Interestingly, transplantation of 10% cyclic mechanical stretch (CMS)-treated MSCs into HU animals significantly alleviated the BM microenvironment and rebalanced bone remodeling. In summary, our research revealed a new mechanism underlying mechanical unloading-induced bone loss and suggested a novel stem cell-based therapy to potentially prevent disuse-induced osteoporosis.


Bone Resorption , Osteoporosis , Mice , Animals , Secretome , Bone Resorption/pathology , Mice, Knockout , Inflammation , Cytokines , Ion Channels
15.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(3. Vyp. 2): 83-91, 2024.
Article Ru | MEDLINE | ID: mdl-38512099

Ischemic and hemorrhagic strokes, traumatic brain injury, bacterial and viral encephalitis, toxic and metabolic encephalopathies are very different pathologies. But, they have much more in common than it might seem at first glance. In this review, the authors propose to consider these brain pathologies from the point of view of the unity of their pathogenetic mechanisms and approaches to therapy. Particular attention is paid to promising therapeutic approaches, such as therapy using cells and their secretion products: an analysis of the accumulated experimental data, the advantages and limitations of these approaches in the treatment of brain damage was carried out. The review may be of interest both to specialists in the field of neurology, neurosurgery and neurorehabilitation, and to readers who want to learn more about the progress of regenerative biomedicine in the treatment of brain pathologies.


Brain Injuries, Traumatic , Brain Injuries , Mesenchymal Stem Cells , Humans , Secretome , Brain Injuries, Traumatic/therapy , Brain
16.
BMC Oral Health ; 24(1): 390, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539170

BACKGROUND: Periodontal ligament stem cells (PDLSCs) have been proposed as therapeutic candidates in periodontal diseases and periodontium defects. Paracrine factors of PDLSCs, namely, secretome, can contribute to tissue regeneration comparable to direct stem cell application. This study explored restoration effects of PDLSC-derived secretome/conditioned medium (PDLSC-CM) on PDLSCs themselves in an inflammatory microenvironment and identified its action mechanisms using proteomics and transcriptomic profiling. METHODS: PDLSC-CM was prepared from cells under healthy culture conditions. Mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were then performed to analyze the PDLSC-CM proteome. Osteogenic differentiation of PDLSCs under inflammatory conditions or in the presence of PDLSC-CM was then characterized in assays of alkaline phosphatase activity, intracellular calcium levels, protein expression of osteogenic markers, and matrix mineralization. Furthermore, the transcriptomic profile was assessed to identify significantly enriched signaling pathways and associated molecular networks by RNA sequencing. RESULTS: LC-MS/MS proteomics identified a total of 203 proteins and distinguished 187 significant protein changes in PDLSC-CM compared to control-CM. LPS-treated PDLSCs significantly attenuated osteogenic differentiation. When PDLSCs were treated with PDLSC-CM alone, their osteogenic activity was significantly upregulated compared to the control group. Moreover, the LPS-impaired osteogenesis of PDLSCs was reconstituted by PDLSC-CM treatment. RNA sequencing revealed 252, 1,326, and 776 differentially expressed genes in the control vs. LPS, control vs. PDLSC-CM, and LPS vs. LPS + PDLSC-CM groups, respectively. CONCLUSION: This study suggest that PDLSC-CM restores the osteogenic potential of PDLSCs in an inflammatory environment through secretory functions representing potential repair and regenerative mechanisms.


Periodontal Ligament , Periodontitis , Humans , Osteogenesis/genetics , Culture Media, Conditioned/pharmacology , Proteome/pharmacology , Transcriptome , Lipopolysaccharides/pharmacology , Chromatography, Liquid , Secretome , Tandem Mass Spectrometry , Stem Cells , Cell Differentiation , Cells, Cultured
17.
Aging Cell ; 23(4): e14104, 2024 Apr.
Article En | MEDLINE | ID: mdl-38454639

Unlike chronological age, biological age is a strong indicator of health of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To define a high-resolution signature of biological age, we analyzed metabolome, circulating senescence-associated secretome (SASP)/inflammation markers and the interaction between them, from a cohort of healthy and rapid agers. The balance between two fatty acid oxidation mechanisms, ß-oxidation and ω-oxidation, associated with the extent of functional aging. Furthermore, a panel of 25 metabolites, Healthy Aging Metabolic (HAM) index, predicted healthy agers regardless of gender and race. HAM index was also validated in an independent cohort. Causal inference with machine learning implied three metabolites, ß-cryptoxanthin, prolylhydroxyproline, and eicosenoylcarnitine as putative drivers of biological aging. Multiple SASP markers were also elevated in rapid agers. Together, our findings reveal that a network of metabolic pathways underlie biological aging, and the HAM index could serve as a predictor of phenotypic aging in humans.


Cellular Senescence , Secretome , Humans , Aging/genetics , Aging/metabolism , Metabolome , Biomarkers/metabolism
18.
Res Vet Sci ; 171: 105222, 2024 May.
Article En | MEDLINE | ID: mdl-38513461

In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 µg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.


Follicular Fluid , Proteomics , Female , Horses , Animals , Follicular Fluid/chemistry , Follicular Fluid/metabolism , Secretome , Meiosis , Oocytes/metabolism , In Vitro Oocyte Maturation Techniques/veterinary
19.
Cells ; 13(5)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38474424

Briefly (10 min) exposing C2C12 myotubes to low amplitude (1.5 mT) pulsed electromagnetic fields (PEMFs) generated a conditioned media (pCM) that was capable of mitigating breast cancer cell growth, migration, and invasiveness in vitro, whereas the conditioned media harvested from unexposed myotubes, representing constitutively released secretome (cCM), was less effective. Administering pCM to breast cancer microtumors engrafted onto the chorioallantoic membrane of chicken eggs reduced tumor volume and vascularity. Blood serum collected from PEMF-exposed or exercised mice allayed breast cancer cell growth, migration, and invasiveness. A secretome preconditioning methodology is presented that accentuates the graded anticancer potencies of both the cCM and pCM harvested from myotubes, demonstrating an adaptive response to pCM administered during early myogenesis that emulated secretome-based exercise adaptations observed in vivo. HTRA1 was shown to be upregulated in pCM and was demonstrated to be necessary and sufficient for the anticancer potency of the pCM; recombinant HTRA1 added to basal media recapitulated the anticancer effects of pCM and antibody-based absorption of HTRA1 from pCM precluded its anticancer effects. Brief and non-invasive PEMF stimulation may represent a method to commandeer the secretome response of muscle, both in vitro and in vivo, for clinical exploitation in breast and other cancers.


Breast Neoplasms , Electromagnetic Fields , High-Temperature Requirement A Serine Peptidase 1 , Secretome , Animals , Mice , Culture Media, Conditioned , Muscle Fibers, Skeletal , Secretome/metabolism , High-Temperature Requirement A Serine Peptidase 1/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/therapy
20.
Scand J Immunol ; 99(1): e13328, 2024 Jan.
Article En | MEDLINE | ID: mdl-38441277

Calcineurin inhibitors have been found to exhibit a preventive role against neuroinflammation, which represents a crucial underlying mechanism in neurodegenerative diseases (ND). Additionally, they possess suppressive effects on the activation of apoptotic pathways, which constitute another mechanism underlying such diseases. Given that pimecrolimus, a calcineurin inhibitor, impedes the synthesis of pro-inflammatory cytokines, such as interleukin (IL)-2, IL-4, and IL-10, and influences apoptotic processes, it is noteworthy to test its potential neuroprotective properties. Thus, the objective of this investigation was to assess the potential protective effects of pimecrolimus against the degenerative consequences of both microglial secretomes and hydrogen peroxide (H2O2), an oxidant agent. The survival rates of HMC3 microglia cells, neuron-like differentiated SH-SY5Y (d-SH-SY5Y) cells, and their co-culture were determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method. Furthermore, the levels of pro-inflammatory cytokines IL-1ß and IL-6, and anti-inflammatory cytokine IL-10 were measured using ELISA kits, besides total antioxidant and oxidant capacities in conditioned media of cells. Additionally, the effect of pimecrolimus on neurite length in these cell groups was evaluated through morphological observations. This study revealed, for the first time, that pimecrolimus exerts preventive effects on neurodegenerative processes by virtue of its anti-inflammatory and -antioxidant activities. It holds promise as a potential treatment option for ND.


Antioxidants , Neuroblastoma , Tacrolimus/analogs & derivatives , Humans , Antioxidants/pharmacology , Hydrogen Peroxide , Interleukin-10 , Microglia , Secretome , Neurons , Oxidants , Cytokines , Anti-Inflammatory Agents/pharmacology
...